Ocular Artifacts Removal from EEG Using EMD

نویسندگان

  • David Looney
  • Ling Li
  • Tomasz. M. Rutkowski
  • Danilo P. Mandic
  • Andrzej Cichocki
چکیده

Electroencephalogram (EEG) provides a non-invasive way to analyze brain activity. Blinking and movement of the eyes causes a strong electrical activity that can contaminate EEG recordings, particularly around the forehead but also as far as in occipital areas. Removal of such ocular artifacts is a considerable signal processing problem, since those artifacts overlap in frequency domain with EEG. In this paper we propose a signal reconstruction method based on a time frequency analysis tool known as the Hilbert-Huang spectrum. We demonstrate how our reconstruction scheme can be successfully applied to contaminated EEG data for the purposes of removing unwanted ocular artefacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

Removal of Ocular Artifacts in the EEG through Wavelet Transform without using an EOG Reference Channel

This paper presents a statistical method for removing ocular artifacts in the electroencephalogram (EEG) records. Artifacts in EEG signals are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). The removal of ocular artifact from scalp EEGs is of considerable importance for both the automated and visual analysis of underlying brainwave activi...

متن کامل

The Removal of EOG Artifacts from EEG Signals using Multivariate Empirical Mode Decomposition

The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this project, the multivariate empirical mode decomposition (MEMD)method will be proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. Firstly, the EEG signals will be decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-rel...

متن کامل

Removal of Ocular Artifacts from EEG Signals by Fast RLS Algorithm using Wavelet Transform

This paper presents an adaptive filtering method to remove ocular artifacts in the electroencephalogram (EEG) records. The major concern in analyzing EEG signal is the presence of ocular artifacts in EEG records caused due to various factors. It is essential to design specific filters to remove the artifacts in EEG records. Here, we proposed an adaptive

متن کامل

Removal of Ocular Artifacts from EEG Signals by Fast RLS Algorithm using Wavelet Transform

This paper presents an adaptive filtering method to remove ocular artifacts in the electroencephalogram (EEG) records. The major concern in analyzing EEG signal is the presence of ocular artifacts in EEG records caused due to various factors. It is essential to design specific filters to remove the artifacts in EEG records. Here, we proposed an adaptive filtering method that uses RLS (Recursive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007